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The moment Lyapunov exponents of a two-dimensional system under real-noise excitation,
an Ornstein}Uhlenbeck process, are studied in this paper. The method of regular perturbation
is applied to obtain the weak-noise expansions of the moment Lyapunov exponent,
Lyapunov exponent, and stability index in terms of the small #uctuation parameter.
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1. INTRODUCTION

The loadings imposed on the structures are quite often random forces, such as those arising
from earthquakes, wind and ocean waves, which can be described satisfactorily only in
probabilistic terms. Under the action of such loadings, the parameters that describe the
motion of the structure will #uctuate in a stochastic manner. The response of the structure is
governed by the stochastic di!erential equations, in which the parameters or coe$cients are
stochastic processes. Investigations of stability under parametric stochastic excitation have
become increasingly important.

In this paper, the parametric stability of the following non-dimensional two-dimensional
system under weak real-noise excitation is studied:

d2q

dq2
#2b

dq

dq
#[u2

0
!e

0
m(q)]q"0, (1)

where q is the time variable, q(q) the generalized co-ordinate, b the damping constant, u
0
the

circular natural frequency of the system, e
0
'0 a small #uctuation parameter, and m (q) an

Ornstein}Uhlenbeck process given by [1]

dm (q)"!a
0
m (q) dq#p

0 3
d= (q), (2)

where=(q) is a standard Wiener process. Letting p
0
"J2a

0
a
0
, the correlation function

and spectral density of the Ornstein}Uhlenbeck process m (q) are

R(¹)"a
0
a
0
e~a0DTD, S (X)"

a
0

1#(X/a
0
)2

,
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in which the parameter a
0

characterizes the bandwidth of the noise and a
0

is related to the
spectral density of the noise. When a

0
PR, the Ornstein}Uhlenbeck process m(t) becomes

a standard Gaussian white-noise process with constant spectral density a
0
.

The sample or almost-sure stability of the trivial solution of system (1) is determined by
the Lyapunov exponent, which characterizes the average exponential rate of growth of the
solutions of system (1) for q large, de"ned as

j
q(q)" lim

q?=

1

q
log DDq(q)DD, (3)

where q (q)"Mq (q), q@ (q)NT and DD ) DD denotes the Euclidean vector norm. Depending on the
initial conditions q(0) and q@(0), there are two Lyapunov exponents for system (1). The
trivial solution of system (1) is stable with probability one (w.p.1) if the top Lyapunov
exponent is negative, whereas it is unstable w.p.1 if the top Lyapunov exponent is positive.

On the other hand, the stability of the pth moment of the trivial solution of system (1),
E[DDq (q)DDp], is determined by the moment Lyapunov exponent

K
q(q)(p)" lim

qPR

1

q
logE[DDq(q)DDp], (4)

where E[ ) ] denotes expected value. If K
q(q)(p)(0, then E[DDq (t)DDp]P0 as qPR.

The pth moment Lyapunov exponent K
q(q)(p) is a convex analytic function in p with

K
q(q)(0)"0 and K@

q(q)(0) is equal to the top Lyapunov exponent j
q(q). The non-trivial zero

d
q(q) of K

q(q)(p), i.e. K
q(q)(dq(q))"0, is called the stability index.

However, suppose the top Lyapunov exponent j
q(q) is negative, implying that system (1)

is sample stable, the pth moment typically grows exponentially for large enough p,
implying that the pth moment of system (1) is unstable. This can be explained by large
deviation. Although the solution of the system DDq(q)DDP0 as qPR w.p.1 at an exponential
rate j

q(q), there is a small probability that DDq (q)DD is large, which makes the expected value
E[DDq(q)DDp] of this rare event large for large enough values of p, leading to the pth moment
instability.

To have a complete picture of the dynamical stability of system (1), it is important to
study both the sample and the moment stability and to determine both the top Lyapunov
exponent and the pth moment Lyapunov exponent. The objective of this paper is to obtain
weak-noise expansions of the top Lyapunov exponent, moment Lyapunov exponent, and
the stability index of system (1) in terms of the small #uctuation parameter e

0
.

The damping term in system (1) can be removed by letting q (q)"x (q)e~bq to yield

d2x

dq2
#[u2!e

0
m (q)] x"0, (5)

where u2"u2
0
!b2. The Lyapunov exponent and moment Lyapunov exponent of system

(5) are related to those of system (1) as follows:

j
q(q)"!b#j

x(q), K
q(q)(p)"!pb#K

x(q)(p). (6)

System (5) may be further simpli"ed by the time scaling t"uq to

d2x

dt2
#[1!ef (t)]x"0, (7)
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where e"e
0
/u'0 is a small #uctuation parameter, and f (t) an Ornstein}Uhlenbeck

process given by

df(t)"!a f(t) dt#p
3
d= (t), (8)

where a"a
0
/u, p"p

0
/Ju.

The Lyapunov exponent and moment Lyapunov exponent of system (7) are related to
those of system (5) by

j
x(q)"uj

x(t)
, K

x(q)(p)"uK
x(t)

(p). (9)

Hence, from equations (6) and (9), one obtains

j
q(q)"!b#uj

x(t)
, K

q(q)(p)"!pb#uK
x(t)

(p). (10)

Without loss of generality, the moment Lyapunov exponent of system (7) is studied in the
remainder of this paper.

A systematic study of moment Lyapunov exponents is presented in reference [2] for
linear Ito( systems and reference [3] for linear stochastic systems under real-noise
excitations. The connection between the moment Lyapunov exponents and the large
deviation theory was studied by Baxendale [4], Arnold and Kliemann [5], Baxendale and
Stroock [6]. A systematic presentation of the theory of random dynamical systems and
a comprehensive list of references can be found in reference [7].

Although the moment Lyapunov exponents are important in the study of dynamic
stability of stochastic systems, the actual evaluations of the moment Lyapunov exponents
are very di$cult. Very few results on the moment Lyapunov exponents have been
published. Using the analytic property of the moment Lyapunov exponents, Arnold et al.
[8] obtained expansions in terms of e

0
p under both white- and real-noise excitations.

However, for system (1), moment instability normally occurs for large values of p. This
makes the results obtained by Arnold et al. [8] inappropriate for determining the stability
index. Khasminskii and Moshchuk [9] obtained an asymptotic expansion of the moment
Lyapunov exponent of system (1) under white-noise parametric excitation in terms of the
small-#uctuation parameter e

0
, from which the stability index was obtained.

In this paper, a procedure similar to that employed in Khasminskii and Moshchuk [9] is
applied to obtain a weak-noise expansion of the moment Lyapunov exponent of system (7),
or equivalently (1), under real-noise excitation in terms of the small #uctuation parameter e.
Expansions of the Lyapunov exponent and stability index are also obtained.

2. FORMULATION

Consider the two-dimensional system (7) under real-noise parametric excitation, i.e., an
Ornstein}Uhlenbeck process f (t) given by equation (8). The generator of process f(t) is

G"

p2

2

L2
Lf2

!af
L
Lf

. (11)

Letting x
1
"x, x

2
"x5 , equation (7) may be written in the form of state equation

G
x5
1

x5
2
H"A(f)G

x
1

x
2
H, A (f)"C

0 1

!1#ef 0D . (12)



142 W.-C. XIE
Apply the Khasminskii transformation [10]:

s
1
"

x
1
a
"cosu, s

2
"

x
2
a
"sinu, a"DDxDD"(x2

1
#x2

2
)1@2, (13)

and denote s"Ms
1
, s

2
NT"Mcosu, sinuNT. From the general theory of moment Lyapunov

exponents [3] it is well known that, assuming that f is strongly elliptic, the
moment Lyapunov exponent K

x(t)
(p) of system (12) is the principal simple eigenvalue of

the in"nitesimal operator ¸ (p)

¸(p)¹(f, s)"K
x(t)

(p)¹ (f, s), ¸ (p)"L#pQ(f, s), (14)

where

L"G#hT
L
Ls

, Q(f, s)"sTA(f)s"ef cosu sinu,

h(f, s)"(A (f)!Q(f, s)I) s"G
!efcos2u sinu#sinu

(!1#ef)cosu!efcosu sin2uH.
Since

L
Ls

1

"!sinu
L
Lu

,
L

Ls
2

"cos u
L
Lu

,

one has

hT
L
Ls

"h
1

L
Ls

1

#h
2

L
Ls

2

"(!1#ef cos2u)
L
Lu

,

and the in"nitesimal operator ¸ (p) is obtained as

¸ (p)"
p2

2

L2

Lf2
!af

L
Lf

#(!1#ef cos2u)
L
Lu

#epf cos u sinu. (15)

The in"nitesimal operator ¸ (p) of the eigenvalue problem (14) for the pth moment
Lyapunov exponent can also be derived using a more straight-forward approach without
resorting to the general theory of moment Lyapunov exponents. This approach was "rst
applied by Wedig [11] to derive the eigenvalue problem for the moment Lyapunov
exponent of a two-dimensional linear Ito( stochastic system.

Equations (7) and (8) may be considered as a three-dimensional system

dG
x
1

x
2
f H"G

x
2

(!1#ef)x
1

!af Hdt#G
0

0

pHd=.

Apply the Khasminskii transformation (13) and de"ne the pth norm P"ap. The Ito(
equations for P and u can be obtained by Ito( 's lemma:

dP"epP f cosu sinudt, du"(!1#ef cos2 u) dt. (16)
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Applying a linear stochastic transformation,

S"¹(f,u)P, P"¹~1(f,u)S, !R(f(R, !1
2
n)u)1

2
n,

the Ito( equation for the new pth norm process S is given by, from Ito( 's lemma,

dS"[1
2
p2¹ff!af¹f#(!1#e f cos2u)¹r#epf cosu sinu¹]P dt#p¹fPd=. (17)

For bounded and non-singular transformation ¹ (f, u), both processes P and S are expected
to have the same stability behaviour. Therefore,¹(f, u) is chosen so that the drift term of the
Ito( di!erential equation (17) is independent of the noise process f(t) and the phase process u,
so that

dS"KSdt#p¹f¹~1Sd=. (18)

Comparing equations (17) and (18), it is seen that such a transformation ¹(f, u) is given by
the equation

1
2
p2¹ff!af¹f#(!1#ef cos2 u)¹u#epf cosu sin u¹"K¹,

!R(f(R, !1
2
n)u)1

2
n, (19)

which de"nes an eigenvalue problem for a second-order di!erential operator with K being
the eigenvalue and ¹(f, u) the associated eigenfunction. From equation (18), the eigenvalue
K is seen to be the Lyapunov exponent of the pth moment of system (7), i.e., K"K

x(t)
(p). It

is obvious that the di!erential operator in the eigenvalue problem (19) is the same as the
in"nitesimal operator ¸ (p) given by equation (15).

In the following section, the method of regular perturbation is applied to the eigenvalue
problem (14) to obtain a weak-noise expansion of the moment Lyapunov exponent for
system (7).

3. WEAK-NOISE EXPANSION OF THE MOMENT LYAPUNOV EXPONENT

For weak-noise excitation, i.e., small e, the in"nitesimal operator ¸ (p) can be written as

¸ (p)"¸
0
(p)#e¸

1
(p), (20)

where

¸
0
(p)"

p2

2

L2

Lf2
!af

L
Lf

!

L
Lu

, ¸
1
(p)"fAcos2 u

L
Lu

#p cos u sinuB.
Applying the method of regular perturbation, both the eigenvalue K

x(t)
(p) and the

eigenfunction ¹(f, u), a periodic function in u of period n, are expanded in power series of
e as

K
x(t)

(p)"K
0
(p)#eK

1
(p)#2#enK

n
(p)#2,

(21)
¹(f, u)"¹

0
(f,u)#e¹

1
(f,u)#2#en¹

n
(f,u)#2,

in which ¹
i
(f, u), i"0, 1,2, are periodic functions in u of period n.
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Substituting equations (20) and (21) into the eigenvalue problem (14) and equating terms
of equal power of e yields the following equations:

0th order: ¸
0
¹

0
"K

0
¹

0
,

1st order: ¸
0
¹

1
#¸

1
¹

0
"K

0
¹

1
#K

1
¹

0
,

2nd order: ¸
0
¹

2
#¸

1
¹

1
"K

0
¹

2
#K

1
¹

1
#K

2
¹

0
,

F F

nth order: ¸
0
¹

n
#¸

1
¹

n~1
"K

0
¹

n
#K

1
¹

n~1
#2#K

n
¹

0
.

(22)

3.1. ZEROTH ORDER PERTURBATION

The equation for the zeroth order perturbation is

¸
0
¹

0
"K

0
¹

0
(23)

or
p2

2

L2¹
0

Lf2
!af

L¹
0

Lf
!

L¹
0

Lu
!K

0
¹

0
"0.

Applying the method of separation of variables and letting ¹
0
(f, u)"Z

0
(f)U

0
(u) results in

p2

2

Z$
0

Z
0

!af
ZQ

0
Z

0

!K
0
"

U@
0

U
0

"k.

Solving the equation for U
0

yields U
0
(u)"Aekr. For U

0
(u) to be a period function, it is

required that k"0 and hence U
0
(u) can be chosen as 1.

The equation for Z
0
(f) becomes

1
2
p2Z$

0
!afZQ

0
!K

0
Z

0
"0. (24)

From the property of moment Lyapunov exponent, it is known that

K
x(t)

(0)"K
0
(0)#eK

1
(0)#2#enK

n
(0)#2"0,

which results in K
0
(0)"0. Since the eigenvalue problem (24) does not contain p, the

eigenvalue K
0
(p) is independent of p. Hence, K

0
(0)"0 leads to K

0
(p)"0.

Equation (24) can be easily solved to yield

Z
0
(f)"C

1P expA
a
p2

f2Bdf#C
2
, !R(f(R.

For Z
0
(f) to be bounded, it is required that C

1
"0 and hence Z

0
(f) can be taken as 1.

Therefore,

K
0
(p)"0, ¹

0
(f,u)"Z

0
(f)U

0
(u)"1. (25)

Since K
0
(p)"0, the associated adjoint di!erential equation of (23) is

¸*
0
¹*

0
"

p2

2

L2¹*
0

Lf2
#af

L¹*
0

Lf
#a¹*

0
#

L¹*
0

Lu
"0. (26)
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Applying the method of separation of variables and letting ¹*
0
(f, u)"Z*

0
(f)U*

0
(u) leads to

p2

2

Z$ *
0

Z*
0

#af
ZQ *

0
Z*

0

#a"!

U*@
0

U*
0

"i.

The equation for U*
0

yields U*
0
(u)"B e~ir. For U*

0
(u) to be a period function, i"0 and

U*
0
(u) can be taken as

U*
0
(u)"

1

n
, !1

2
n)u)1

2
n, (27)

which is the probability density function of a uniformly distributed random variable
u between !1

2
n and 1

2
n.

The equation for Z*
0

becomes

1
2
p2Z$ *

0
#afZQ *

0
#aZ*

0
"0. (28)

Equation (28) is the Fokker}Planck equation for the stationary transition probability
density of the Ornstein}Uhlenbeck process f(t) as de"ned in equation (8) [1]. Equation (28)
may be written as

d

dfA
dZ*

0
df

#

2a
p2

fZ*
0B"0

or

dZ*
0

df
#

2a
p2

fZ*
0
"C

3
"probability current. (29)

Since the stationary probability density Z*
0
(f) and the probability current vanishes when

fP$R, the constant of integration C
3
"0. Equation (29) can be easily solved to give

Z*
0
(f)"C

4
expA!

a
p2

f2B.
Since Z*

0
(f) is the stationary probability density, normalizing it yields

Z*
0
(f)"

1

J2npf
expA!

f2
2p2fB, (30)

i.e., the Ornstein}Uhlenbeck process f(t) is a normally distributed random variable with

mean kf"0 and standard deviation pf"p/J2a.
Hence,¹*

0
(f, u)"Z*

0
(f)U*

0
(u) represents the joint stationary probability density function

of the independent random variables f and u, in which f is normally distributed with mean

kf"0 and standard deviation pf"p/J2a and u is uniformly distributed between !1
2
n

and 1
2
n.

3.2. FIRST ORDER PERTURBATION

The "rst order perturbation equation is

¸
0
¹

1
"K

1
¹

0
!¸

1
¹

0
. (31)
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Since the homogeneous equation ¸
0
¹

0
"0 has a non-trivial solution as given by equation

(25), for equation (31) to have a solution it is required that, from the Fredholm alternative,

(K
1
¹

0
!¸

1
¹

0
,¹*

0
)"0, (32)

where ¹*
0
(f, u) is the solution of the adjoint equation (26) as obtained in section 3.1, and (S

1
,

S
2
) denotes the inner product of functions S

1
(f, u) and S

2
(f, u) de"ned by

(S
1
, S

2
)"P

=

~=
P

1@2n

~1@2n
S
1
(f, u)S

2
(f, u) dudf.

From equation (32), the "rst order perturbation of the moment Lyapunov exponent is

K
1
"(¸

1
¹

0
,¹*

0
), (33)

because (¹
0
,¹*

0
)"1.

It is easy to show that

¸
1
¹

0
"fAcos2 u

L¹
0

Lu
#p cosu sinu¹

0B"f (1)
1

(u) f,

where f (1)
1

(u)"p cosu sinu. Hence using equations (27) and (30),

(¸
1
¹

0
,¹*

0
)"f (1)

1
(u)E[f],

which leads to
K

1
"0, (34)

where

a(u)"
1

nP
1@2n

~1@2n
a (u) du,

denotes the expected value of the random variable a(u), in which u is the uniformly
distributed random variable between !1

2
n and 1

2
n as de"ned in equation (27), and E[ b(f)]

denotes the expected value of the random variable b (f), in which f is the normally
distributed random variable de"ned in equation (30).

Hence, equation (31) becomes

¸
0
¹

1
"g(1)

1
(u)f, (35)

where g(1)
1

(u)"!f (1)
1

(u)"!p cosu sinu. Equation (35) is of the form (57) and the
solution is given in Appendix A by equation (A.12).

Since, from Appendix A, E[z (r)]"k
z(r)

"f e~a(r~s), the solution of equation (35) is
obtained as

¹
1
(f,t, s)"P

s

0

g(1)
1

(t!r) e~a(r~s)dr ) f,

or

¹
1
(f,u)"G(1)

1
(u)f, (36)
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where

G(1)
1

(u)"
p

2(a2#4)
(!2 cos 2u#a sin 2u),

in which, as shown in Appendix A, t!s"u and sP!R have been employed.

3.3. SECOND ORDER PERTURBATION

The equation for the second order perturbation is

¸
0
¹

2
"K

2
¹

0
!¸

1
¹

1
. (37)

From the Fredholm alternative, for equation (37) to have a solution, it is required that

(K
2
¹

0
!¸

1
¹

1
,¹*

0
)"0. (38)

Since

¸
1
¹

1
"fAcos2u

L¹
1

Lu
#p cosu sinu¹

1B"f (2)
2

(u)f2,

where

f (2)
2

(u)"cos2uG(1)@
1

(u)#p cosu sinuG(1)
1

(u)

"

p

2(a2#4)
[2 cos2u (2 sin2u#a cos2 u)#p cosu sinu (!2 cos2u#a sin 2u)],

one obtains from equation (38),

K
2
"(¸

1
¹

1
,¹*

0
)"f (2)

2
(u)E[f2]"

p (p#2)p2

16(a2#4)
, (39)

in which E[f2]"p2f"p2/ (2a).
Equation (37) becomes

¸
0
¹

2
"g(2)

0
#g(2)

2
(u)f2, (40)

where

g(2)
0
"K

2
, g(2)

2
(u)"!f (2)

2
(u).

Since, from Appendix A,

E[z2 (r)]"p2
z(r)

#k2
z(r)

"

p2[1!e~2a(r~s)]

2a
#f2e~2a(r~s),

the solution of equation (40) given by equation (68) is

¹
2
(f, u)"G(2)

0
(u)#G(2)

2
(u)f2, (41)
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where

G(2)
0

(u)"P
s

0
Gg(2)

0
(t!r)#

p2

2a
g(2)
2

(t!r)[1!e~2a(r~s)]H dr,

G(2)
2

(u)"P
s

0

g(2)
2

(t!r) e~2a(r~s)dr,

in which t!s"u and sP!R are taken after integration.

3.4. HIGHER ORDER PERTURBATION

The procedure presented in sections 3.1}3.3 is very algorithmic. The algebraic
manipulation can be performed using a symbolic computation software such as maple so
that the higher order approximations can be easily obtained. The procedure can be
summarized as follows.

For the (2n)th order perturbation, n"1, 2,2, the perturbation equation is

¸
0
¹

2n
"K

2
¹

2n~2
#K

4
¹

2n~4
#2#K

2n
¹

0
!¸

1
¹

2n~1
, (42)

because K
0
"K

1
"K

3
"2"K

2n~1
"0. From the Fredholm alternative, for equation

(42) to have a solution, it is required that

(K
2
¹

2n~2
#K

4
¹

2n~4
#2#K

2n
¹

0
!¸

1
¹

2n~1
,¹*

0
)"0. (43)

Since ¸
1
¹

2n~1
is of the form

¸
1
¹

2n~1
"f (2n)

2
(u)f2#f (2n)

4
(u)f4#2#f (2n)

2n
(u)f2n,

equation (43) yields

K
2n
"(¸

1
¹

2n~1
,¹*

0
)!K

2
(¹

2n~2
,¹*

0
)!2!K

2n~2
(¹

2
,¹*

0
)

"f (2n)
2

(u)E [f2]#f (2n)
4

(u)E[f4]#2#f (2n)
2n

(u)E[f2n]

!K
2
MG(2n~2)

0
(u)#G(2n~2)

2
(u)E[f2]#2#G(2n~2)

2n~2
(u)E[f2n~2]N

!2!K
2n~2

MG(2)
0

(u)#G(2)
2

(u)E[f2]N. (44)

Equation (42) is then of the form

¸
0
¹

2n
"g(2n)

0
(u)#g(2n)

2
(u)f2#2#g(2n)

2n
(u)f2n, (45)

which can be solved using equation (A.12) to yield ¹
2n

(f, u) of the form

¹
2n

(f, u)"G(2n)
0

(u)#G(2n)
2

(u)f2#2#G(2n)
2n

(u)f2n. (46)

For the (2n#1)th order perturbation, n"0, 1,2, the perturbation equation is

¸
0
¹

2n`1
"K

2
¹

2n~1
#K

4
¹

2n~3
#2#K

2n
¹

1
#K

2n`1
¹

0
!¸

1
¹

2n
. (47)

From the Fredholm alternative, for equation (47) to have a solution, it is required that

(K
2
¹

2n~1
#K

4
¹

2n~3
#2#K

2n
¹

1
#K

2n`1
¹

0
!¸

1
¹

2n
,¹*

0
)"0, (48)
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which yields

K
2n`1

"(¸
1
¹

2n
,¹*

0
)!K

2
(¹

2n~1
,¹*

0
)!2!K

2n
(¹

1
,¹*

0
).

Since ¸
1
¹

2n
is of the form

¸
1
¹

2n
"f (2n`1)

1
(u)f#f (2n`1)

3
(u)f3#2#f (2n`1)

2n`1
(u)f2n`1,

it can be easily shown that K
2n`1

"0 because E[f2n`1]"0 for n"0, 1,2.
Equation (47) can be written in the form

¸
0
¹

2n`1
"g(2n`1)

1
(u)f#g(2n`1)

3
(u)f3#2#g(2n`1)

2n`1
(u)f2n`1, (49)

which can be solved using equation (A.12) to yield ¹
2n`1

of the form

¹
2n`1

(f, u)"G(2n`1)
1

(u)f#G(2n`1)
3

(u)f3#2#G(2n`1)
2n`1

(u)f2n`1. (50)

Following this procedure, the weak-noise expansion of the moment Lyapunov exponent
is obtained as

K
x(t)

(p)"e2K
2
#e4K

4
#e6K

6
#O(e8), (51)

where

K
2
"

p(p#2)p2

16(a2#4)
, K

4
"

p (p#2)p4(a4#22a2#48)

32a (a2#1)(a2#4)3
,

K
6
"p (p#2)p6[p2 (99a14#4274a12#70379a10#499596a8#1547568a6

#2119232a4#1267200a2#262144)#p (198a14#8548a12#140758a10

#999192a8#3095136a6#4238464a4#2534400a2#524288)

#(!1080a14!42960a12!650680a10!3903840a8!2981760a6#27553280a4

#60641280a2#31457280)]/[8192a2(a2#16)(9a2#4)(a2#1)2(a2#4)5].

The Lyapunov exponent for system (7) can be obtained from equation (51) by using the
property of the moment Lyapunov exponent,

j
x(t)

"

dK
x(t)

(p)

dp K
p/0

"e2j
2
#e4j

4
#e6j

6
#O(e8), (52)

where

j
2
"

p2

8(a2#4)
, j

4
"

p4 (a4#22a2#48)

16a (a2#1)(a2#4)3
,

j
6
"!5p6(27a14#1074a12#16267a10#97596a8#74544a6!688832a4

!1516032a2!786432)/[512a2 (a2#16)(9a2#4)(a2#1)2(a2#4)5].

3.5. STABILITY INDEX

As mentioned in section 1, the stability index is the non-trivial zero of the moment
Lyapunov exponent. For system (7), the moment Lyapunov exponent is given by equation
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(51). It is seen that p"0 and p"2 are the two values that lead to K
x(t)

(p)"0, and hence
the stability index d

x(t)
"!2.

For system (1), the moment Lyapunov exponent is

K
q(q)(p)"!pb#uK

x(t)
(p),

and the stability index d
q(q) is given by

K
q(q)(dq(q))"!bd

q(q)#uK
x(t)

(d
q(q))"0,

or

K
x(t)

(d
q(q))!e2bI d

q(q)"0, (53)

where e2bI "b/u.
Expanding the stability index d

q(q) in power series of e as

d
q(q)"d

0
#ed

1
#2#end

n
#2, (54)

and substituting equations (51) and (54) into equation (53), expanding and equating terms of
equal power of e yields the equations

2nd order d
0C!bI #

(d
0
#2)p2

16(a2#4)D"0,

3rd order d
1C!bI #

(3d
0
#2)p2

16(a2#4) D"0,

4th order !bI d
2
#

[d2
1
#2d

2
(d

0
#1)]p2

16(a2#4)
#

d
0
(d

0
#2)(a4#22a2#48)p4

32a (a2#1)(a2#4)3
"0,

F F

(55)

Using a symbolic computation software such as maple, these equations can be easily
manipulated and solved for d

i
, i"0, 1,2, to result in

d
0
"!2#

16bI
p2

(a2#4), d
1
"0,

d
2
"!

8bI (a4#22a2#48)

a(a2#1)(a2#4)
, d

3
"0,

d
4
"bI [!bI 2(3168a18#162112a16#3396960a14#36192384a12#213452800a10

#719785984a8#1375428608a6#1417838592a4#715915264a2#134217728)

#bI p2(396a16#18680a14#349900a12#3124448a10#14183808a8

#33238016a6#38976512a4#21323776a2#4194304)

#p4 (135a14#5514a12#90039a10#676716a8#2095344a6#2482752a4

#38400a2!1572864)]/[4a2p2 (a2#16)(9a2#4)(a2#1)2 (a2#4)3], (56)

where bI "b/(e2u).
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4. NUMERICAL RESULTS AND CONCLUSIONS

In this paper, the moment Lyapunov exponents of a two-dimensional system under
real-noise excitation, an Ornstein}Uhlenbeck process, are studied. The method of regular
perturbation is applied to obtain a weak-noise expansion of the moment Lyapunov
exponent in terms of the small #uctuation parameter, from which weak-noise expansions of
Figure 2. Stability index. u
0
"1)0, a

0
"10)0, p

0
"10)0; (==), b"0)01; ( ), b"0)02; ( ), b"0)03;

(-== -), b"0)04; (- -== - -), b"0)05; (**), b"0)06; ( ), b"0)07; ( ), b"0)08; (-== -),
b"0)09; (- -== - -), b"0)10.

Figure 1. Moment Lyapunov exponents. b"0)01, u
0
"1)0, a

0
"10)0, p

0
"10)0: ( ), e

0
"0)15; ( ),

e
0
"0)20; ( ), e

0
"0)25; ( ), e

0
"0)30; ( ), e

0
"0)35; ( ), e

0
"0)40; ( ),

e
0
"0)45; ( ), e

0
"0)50; (-== -), e

0
"0)55; (} }**}}), e

0
"0)60.
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the Lyapunov exponent and stability index are also obtained. The slope of the moment
Lyapunov exponent curve at p"0 is the Lyapunov exponent. When the Lyapunov
exponent is negative, i.e., when the slope of the moment Lyapunov exponent at the origin is
negative, system (1) is stable w.p.1; otherwise, it is unstable w.p.1. When the system is stable
w.p.1, the non-trivial zero of the moment Lyapunov exponent or the stability index d

q(q) is
positive. If the system is unstable w.p.1, it is unstable in the pth moment for all p'0. If the
system is stable w.p.1, it is unstable in the pth moment for p'd

q(q). The larger the stability
index d

q(q), the more stable the system.
Typical results of the moment Lyapunov exponent K

q(q)(p) for system (1) are shown in
Figure 1 for b"0)01, u

0
"1)0, a

0
"10)0, p

0
"10)0, and various values of #uctuation

parameter e
0
. It is seen that, when e

0
is increased, the slope of the moment Lyapunov

exponent curve at the origin decreases from positive to negative. Typical results of the
stability index d

q(q) are shown in Figure 2. It is observed that, when e
0

is increased, the
stability index d

q(q) decreases from positive to negative values. It is also seen that the larger
the damping coe$cient b, the larger the stability index d

q(q).
The procedure presented in this paper is quite algorithmic and the algebraic manipulation

can be performed by a symbolic computation software package.
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APPENDIX A: SOLUTION OF ¸
0
¹(f, u)"f (f)g(u)

Consider the partial di!erential equation

¸
0
¹ (f, u)"f (f)g(u)

or

A
p2

2

L2
Lf2

!af
L
Lf

!

L
LuB¹(f,u)"f (f)g(u). (A.1)

Introducing an auxiliary time t@ to equation (A.1) leads to

A
L
Lt@

#

p2

2

L2

Lf2
!af

L
Lf

!

L
LuB¹(f, u, t@)"f (f)g(u). (A.2)

Applying the transformation

t"1
2
(t@#u), s"1

2
(t@!u)

or

t@"t#s, u"t!s,

equation (A.2) becomes

A
L
Ls

#

p2

2

L2
Lf2

!af
L
LfB¹(f, t, s)"f (f)g (t!s). (A.3)

Applying Duhamel's principle [12], the solution ¹(f, t, s) to equation (A.3) is given by

¹ (f, t, s)"P
s

0

<(f, t, s; r) dr, (A.4)

where <(f, t, s; r) is the solution of the homogeneous equation

A
L
Ls

#

p2

2

L2
Lf2

!af
L
LfB<(f, t, s; r)"0 for s'r,

<(f, t, r; r)"f (f)g(t!r) for s"r.
(A.5)

To solve equation (A.5), consider the equation

A
L
Ls

#

p2

2

L2

Lf2
!af

L
LfBP (s, f; t, z)"0, s(t,

P (t, f; t, z)"lim
stt

P (s, f; t, z)"d (z!f) .
(A.6)
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Equation (A.6) is the Kolmogorov's backward equation for the transition probability
function P (s, f; t, z). It is well known [13] that the transition probability P (s, f; t, z) is also
the fundamental solution of the forward or Fokker}Planck equation, i.e., for the initial
condition s and f "xed,

C
L
Lt

!

p2

2

L2

Lz2
#

L
Lz

(!az)DP (s, f; t, z)"0, t's,

P (s, f; s, z)"lim
tss

P (s, f; t, z)"d (z!f).
(A.7)

Applying the Fourier transformation

PI (s, f; t, k)"
1

J2n P
=

~=

eikzP (s, f; t, z) dz

to equation (A.7) leads to

LPI
Lt

#ak
LPI
Lk

"!

p2k2

2
PI ,

PI (s, f; s, k)"
1

J2n
e*kf.

(A.8)

Equation (A.8) can be solved using the method of characteristics to give

PI (s, f; t, k)"
1

J2n
expGikfe~a(t~s)#

p2

4a
k2[e~2a(t~s)!1]H. (A.9)

Applying the inverse Fourier transformation

P (s, f; t, z)"
1

J2nP
=

~=

e~*kzPI (s, f; t, k)dk,

to equation (A.9) leads to

P (s, f; t, z)"
1

J2np
z(t)

expC!
(z!k

z(t)
)2

2p2
z(t)

D, (A.10)

where

k
z(t)

"fe~a(t~s), p2
z(t)

"

p2[1!e~2a(t~s)]

2a
.

Hence, for the initial condition f(s) "xed, z(t) is a normally distributed random variable with
mean k

z(t)
and standard deviation p

z(t)
.

From equation (A.5) and (A.6), the solution < (f, t, s; r) to equation (A.5) is given by

< (f, t, s; r)"g (t!r)P
=

~=

f (z)P(s, f; r, z) dz, (A.11)

where

E[ f (z(r))]"P
=

~=

f (z)P (s, f; r, z) dz,
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is the expected value of the random variable f (z (r)) with z (r) being the normally distributed
random variable as de"ned in (A.10).

Combining equations (A.4) and (A.11), the solution to equation (A.3) is given by

¹(f, t, s)"P
s

0

g (t!r)E[ f (z(r))] dr. (A.12)

The solution ¹ (f, u) to equation (A.1) is obtained by replacing u"t!s and passing the
limit sP!R.
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